

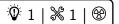
TD 18 - Électromagnétisme

Correction

Retour sur les phénomènes d'induction

Refaire le cours

Exercice 1 : Rails de Laplace utilisés comme moteur



▶ Équations électrique et mécanique;
 ▶ Bilan de puissance.

Compte tenu de l'orientation (conventionnelle) de l'intensité dans le système, l'élément de longueur $\vec{d\ell}$ sur la tige mobile est orienté selon $+\overrightarrow{e}_{y}$. Ainsi, la force de Laplace vaut

$$\overrightarrow{F}_{\rm L} = \int i \, \overrightarrow{\mathrm{d}\ell} \wedge \overrightarrow{B} = i \int \mathrm{d}\ell \, \overrightarrow{e}_y \wedge B \, \overrightarrow{e}_z = i B \int \mathrm{d}\ell \, \overrightarrow{e}_x \qquad \mathrm{soit} \qquad \boxed{\overrightarrow{F}_{\rm L} = i a B \, \overrightarrow{e}_x \, .}$$

L'orientation positive conventionnelle du circuit, c'est-à-dire concrètement le sens du $\overline{d\ell}$, coïncide toujours avec le sens conventionnel positif du courant ... et ce quel que soit le sens réel du courant.

Appliquons le théorème de la résultante cinétique à la tige mobile dans le référentiel terrestre \mathcal{R} considéré galiléen. Les rails sont implicitement supposés horizontaux, le poids de la tige est donc compensé par une force de réaction normale, et les frottements sont négligés. Par conséquent,

$$\left. \frac{\mathrm{d}\,\vec{p}}{\mathrm{d}t} \right|_{\mathcal{R}} = \vec{F}_{\mathrm{L}}$$

et en projection sur \overrightarrow{e}_x ,

$$m\frac{\mathrm{d}v_x}{\mathrm{d}t} = iaB.$$

Compte tenu de l'orientation (conventionnelle) de i, le vecteur normal au circuit est $+\overrightarrow{e}_z$ par règle de la main droite, donc le flux magnétique vaut

$$\Phi = \iint \vec{B} \cdot dS \vec{e}_z = +Bax.$$

En plus de fixer le sens de $d\ell$,

le sens conventionnel de l'intensité fixe par règle de la main droite le sens du vecteur normal au circuit ... et ce quel que soit le sens réel du courant.

D'après la loi de Faraday,

$$e_{\rm ind} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -aBv_x$$
.

Le schéma électrique équivalent contient le générateur extérieur E_0 , un générateur équivalent $e_{\rm ind}$ et la résistance rdu système, voir figure 1.

Le générateur induit doit obligatoirement être orienté en convention générateur pour que sa fém soit donnée par la loi de Faraday.

D'après la loi des mailles, on en déduit

$$E_0 + e_{\text{ind}} = ri$$
 soit $E_0 - aBv_x = ri$.

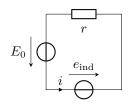


Figure 1 - Circuit électrique équivalent aux rails de Laplace utilisés en moteur.

3 À partir de l'équation électrique, on obtient

$$i = \frac{E_0}{r} - \frac{aB}{r}v_x$$

et en reprenant l'équation mécanique on en déduit

$$m\frac{\mathrm{d}v_x}{\mathrm{d}t} = \frac{E_0 aB}{r} - \frac{(aB)^2}{r}v_x$$

ce qui s'écrit sous la forme

$$\frac{\mathrm{d}v_x}{\mathrm{d}t} + \underbrace{\frac{(aB)^2}{mr}}_{=1/\tau} v_x = \frac{E_0 aB}{mr}$$

Les solutions de cette équation sont de la forme

$$v_x(t) = A e^{-t/\tau} + \frac{E_0}{aB}$$

et avec la condition initiale

$$v_x(0) = 0 = A + \frac{E_0}{aB}$$
 d'où $A = \frac{E_0}{aB}$.

On en déduit finalement

$$v_x(t) = \frac{E_0}{aB} \left(1 - e^{-t/\tau} \right) .$$

4 D'après l'équation électrique,

$$v_x = \frac{E_0}{aB} - \frac{r}{aB}i$$

donc en injectant dans l'équation mécanique

$$-m\frac{r}{aB}\frac{\mathrm{d}i}{\mathrm{d}t} = iaB$$

ce qui s'écrit sous la forme

$$\frac{\mathrm{d}i}{\mathrm{d}t} + \underbrace{\frac{(aB)^2}{mr}}_{=1/\tau}i = 0.$$

Le temps caractéristique τ est intrinsèque au système, et indépendant de la grandeur couplée considérée.

D'après l'équation électrique appliquée à l'instant initial où la tige est immobile,

$$i(0) = \frac{E_0}{r} - \frac{aB}{r}v_x(0) = \frac{E_0}{r}$$

On en déduit

$$i(t) = \frac{E_0}{r} e^{-t/\tau}.$$

5 La puissance mécanique algébriquement fournie par la force de Laplace vaut

$$\mathcal{P}_{\mathrm{L}} = \overrightarrow{F}_{\mathrm{L}} \cdot \overrightarrow{v} = iaBv_x$$
.

La puissance électrique algébriquement fournie par le générateur induit vaut

$$\mathcal{P}_{\text{ind}} = e_{\text{ind}} i = -iaBv_x$$
.

Ces deux puissances sont opposées : la conversion électro-mécanique de puissance est parfaite. Le sens du courant est a priori imposé par le générateur E_0 , donc i>0, $\mathcal{P}_{\rm L}>0$ et $\mathcal{P}_{\rm ind}<0$: la puissance électrique prélevée est intégralement restituée sous forme de puissance mécanique.

•

La puissance mécanique \mathcal{P}_{L} fournie par les actions de Laplace et la puissance électrique fournie par le générateur induit sont toujours exactement opposées,

$$\mathcal{P}_{L} + e_{\text{ind}} i = 0$$
.

Cette relation est toujours valable, et permet de calculer efficacement la fém induite dans des situations où la loi de Faraday ne s'applique pas.

6 Multiplions l'équation mécanique par v_x et l'équation électrique par i,

$$m \frac{\mathrm{d}v_x}{\mathrm{d}t} v_x = iaBv_x$$
 et $E_0 i - iaBv_x = ri^2$.

Nulle magie ici : l'équation mécanique implique des forces, or une puissance est le produit d'une force par une vitesse; et l'équation électrique implique des tensions, or une puissance est le produit d'une tension par une intensité. Dans le cas d'un système en rotation, l'équation mécanique implique des moments et il faut alors multiplier par la vitesse angulaire pour obtenir une puissance.

Sommons ces deux équations de sorte à faire disparaître le terme traduisant la conversion électro-mécanique de puissance $iaBv_x$,

$$E_0 i = m \frac{\mathrm{d}v_x}{\mathrm{d}t} v_x + ri^2$$

ce qui se réécrit sous la forme

$$E_0 i = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} m v_x^2 \right) + r i^2.$$

Cette équation signifie que la puissance E_0i fournie par le générateur permet pour partie d'augmenter l'énergie cinétique de la tige mobile (conversion électrique \rightarrow mécanique), et est pour partie dissipée par effet Joule dans les rails.

Exercice 2 : Rails de Laplace utilisés comme générateur

(\$

- ▶ Équations électrique et mécanique;
- ▷ Bilan de puissance.
- 1
 Raisonnons à partir de la loi de Lenz.

Loi de Lenz :

Par leurs conséquences, les phénomènes inductifs tendent toujours à atténuer leurs causes.

Les causes premières de l'induction étant les variations de flux magnétiques, les phénomènes inductifs cherchent toujours à ralentir ces variations.

Ainsi, le champ magnétique induit renforce le champ extérieur si le flux est en train de diminuer, ou s'oppose au champ extérieur si le flux est en train d'augmenter.

De même, les actions mécaniques induites sont toujours des actions de freinage.

Ici, sous l'effet de la force $\overrightarrow{F_0}$, la tige mobile se déplace selon $+\overrightarrow{e}_x$, donc la surface du circuit augmente, donc le flux magnétique augmente. D'après la loi de Lenz, les phénomènes d'induction vont modérer cette augmentation.

 \triangleright Raisonnement en termes de champ magnétique induit. Le flux magnétique augmente, donc le champ induit a pour effet de diminuer le champ total en s'opposant au champ extérieur \overrightarrow{B} : il est donc dirigé selon $-\overrightarrow{e}_z$. Par règle de la main droite, on en déduit le sens réel du courant induit qui le créé : il tourne « en sens horaire » sur la figure. On obtient alors le signe du courant induit,

ightharpoonup Raisonnement en termes de force de Laplace induite. Le mouvement de la tige est selon $+\vec{e}_x$, et comme la force de Laplace induite est une force de freinage alors elle est dirigée selon $-\vec{e}_x$. Par règle de la main droite, on en déduit le sens réel du courant induit qui créé cette force : dans la tige mobile, il doit être dirigé « de haut en bas » sur la figure. On obtient alors le signe du courant induit,

$$i_{\rm ind} < 0$$
.

Quel que soit le sens réel du courant, seul compte l'orientation positive conventionnelle de l'intensité dans le système. Comme dans l'exercice précédent, l'élément de longueur $\overrightarrow{d\ell}$ sur la tige mobile est orienté selon $+\overrightarrow{e}_y$. Ainsi, la force de Laplace vaut

$$\overrightarrow{F_{\rm L}} = \int i \, \overrightarrow{\mathrm{d}\ell} \wedge \overrightarrow{B} = i \int \mathrm{d}\ell \, \overrightarrow{e_y} \wedge B \, \overrightarrow{e_z} = i B \int \mathrm{d}\ell \, \overrightarrow{e_x} \qquad \text{soit} \qquad \boxed{\overrightarrow{F_{\rm L}} = i a B \, \overrightarrow{e_x} \, .}$$

L'orientation positive conventionnelle du circuit, c'est-à-dire concrètement le sens du $\overrightarrow{d\ell}$, coïncide toujours avec le sens conventionnel positif du courant ... et ce quel que soit le sens réel du courant.

Appliquons le théorème de la résultante cinétique à la tige mobile dans le référentiel terrestre \mathcal{R} considéré galiléen. Les rails sont implicitement supposés horizontaux, le poids de la tige est donc compensé par une force de réaction normale, et les frottements sont négligés. Par conséquent,

$$\frac{\mathrm{d}\overrightarrow{p}}{\mathrm{d}t}\Big|_{\mathcal{R}} = \overrightarrow{F_0} + \overrightarrow{F_L}$$

et en projection sur \vec{e}_x ,

$$m\frac{\mathrm{d}v_x}{\mathrm{d}t} = F_0 + iaB.$$

3 Compte tenu de l'orientation (conventionnelle) de i, le vecteur normal au circuit est $+\overrightarrow{e}_z$ par règle de la main droite, donc le flux magnétique vaut

$$\Phi = \iint \vec{B} \cdot dS \vec{e}_z = +Bax.$$

En plus de fixer le sens de $\overrightarrow{d\ell}$,

le sens conventionnel de l'intensité fixe par règle de la main droite le sens du vecteur normal au circuit ... et ce quel que soit le sens réel du courant.

D'après la loi de Faraday,

$$e_{\rm ind} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -aBv_x \,.$$

Le schéma électrique équivalent contient le générateur équivalent e_{ind} et la résistance r du système, voir figure 2.

Le générateur induit doit obligatoirement être orienté en convention générateur pour que sa fém soit donnée par la loi de Faraday.

D'après la loi des mailles, on en déduit

$$e_{\text{ind}} = ri$$
 soit $-aBv_x = ri$.

Figure 2 – Circuit électrique équivalent aux rails de Laplace utilisés en générateur.

 $\fbox{\textbf{4}}$ À partir de l'équation électrique, on obtient

$$v_x = -\frac{r}{aB}i\,,$$

et en reprenant l'équation mécanique on en déduit

$$-\frac{mr}{aB}\frac{\mathrm{d}i}{\mathrm{d}t} = F_0 + iaB$$

ce qui s'écrit sous la forme

$$\frac{\mathrm{d}i}{\mathrm{d}t} + \underbrace{\frac{(aB)^2}{mr}}_{=1/\tau}i = -\frac{aBF_0}{mr}$$

Le temps caractéristique τ est intrinsèque au système, indépendamment de l'utilisation en générateur ou en récepteur qui en est faite.

Les solutions de cette équation sont de la forme

$$i(t) = A e^{-t/\tau} - \frac{F_0}{aB}$$

et avec la condition initiale

$$i(0) \underset{\text{CI}}{=} 0 \underset{\text{sol}}{=} A - \frac{F_0}{aB} \qquad \text{d'où} \qquad A = \frac{F_0}{aB} \,.$$

On en déduit finalement

$$i(t) = -\frac{F_0}{aB} \left(1 - e^{-t/\tau} \right).$$

5 La puissance mécanique algébriquement fournie par la force de Laplace vaut

$$\mathcal{P}_{L} = \overrightarrow{F_{L}} \cdot \overrightarrow{v} = iaBv_{x}$$
.

La puissance électrique algébriquement fournie par le générateur induit vaut

$$\mathcal{P}_{\text{ind}} = e_{\text{ind}} i = -iaBv_x$$
.

Ces deux puissances sont opposées : la conversion électro-mécanique de puissance est parfaite. Contrairement à l'exercice précédent, on a cette fois i < 0 avec toujours $v_x > 0$, donc $\mathcal{P}_{\rm L} < 0$ et $\mathcal{P}_{\rm ind} > 0$: la puissance mécanique prélevée est intégralement restituée sous forme de puissance électrique.

La puissance mécanique \mathcal{P}_{L} fournie par les actions de Laplace et la puissance électrique fournie par le générateur induit sont toujours exactement opposées,

$$\mathcal{P}_{L} + e_{\text{ind}} i = 0$$
.

Cette relation est toujours valable, et permet de calculer efficacement la fém induite dans des situations où la loi de Faraday ne s'applique pas.

6 Multiplions l'équation mécanique par v_x et l'équation électrique par i,

$$m \frac{\mathrm{d}v_x}{\mathrm{d}t} v_x = F_0 v_x + iaBv_x$$
 et $-iaBv_x = ri^2$.

Nulle magie ici : l'équation mécanique implique des forces, or une puissance est le produit d'une force par une vitesse; et l'équation électrique implique des tensions, or une puissance est le produit d'une tension par une intensité. Dans le cas d'un système en rotation, l'équation mécanique implique des moments et il faut alors multiplier par la vitesse angulaire pour obtenir une puissance.

Sommons ces deux équations de sorte à faire disparaître le terme traduisant la conversion électro-mécanique de puissance $iaBv_x$,

$$F_0 v_x = m \frac{\mathrm{d}v_x}{\mathrm{d}t} v_x + ri^2$$

ce qui se réécrit sous la forme

$$F_0 v_x = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} m v_x^2 \right) + r i^2.$$

Cette équation signifie que la puissance F_0v_x fournie par le générateur permet pour partie d'augmenter l'énergie cinétique de la tige mobile, et est pour partie dissipée par effet Joule dans les rails (conversion mécanique \rightarrow électrique).

Bien sûr, n'utiliser la conversion de puissance que pour de l'effet Joule n'est pas très intéressant, mais si un dipôle « utile » avait été branché aux rails il aurait pu recueillir la puissance électrique générée.

Couplage électromécanique en translation

Exercice 3 : Rails de Laplace inclinés

d'après oral CCINP PSI | 🗘 2 | 💥 2 |

De figurations électrique et mécanique.

Exercice 4 : Treuil électromécanique

▶ Équations électrique et mécanique;
 ▶ Bilan de puissance.

1 Pour que la masse soit soulevée, il faut que la force de Laplace subie par la tige soit dirigée selon $-\vec{e}_x$, ce qui $\overline{\text{impose}} i > 0$. La valeur minimale de E correspond au cas statique, où la norme de la force de Laplace est égale au poids de m_0 , c'est-à-dire

$$m_0 g = i_{\min} a B = rac{E_{\min}}{R} a B$$
 d'où $E_{\min} = rac{R \, m_0 \, g}{a \, B}$

2 D'après le TRC appliqué à la masse m_0 ,

$$m_0 \vec{a} = m_0 \vec{g} + \vec{T}$$
 soit $\vec{T} = m_0 (\vec{a} - \vec{g}) = m_0 \left(\frac{\mathrm{d}v_z}{\mathrm{d}t} + g \right) \vec{e}_z$ donc $T = m_0 \left(\frac{\mathrm{d}v_z}{\mathrm{d}t} + g \right)$

3 • Équation mécanique. Appliquons le théorème de la résultante cinétique à la tige (masse m). Le mouvement est horizontal, donc le poids de la tige est compensé par la force de réaction normale exercée par les rails. Ainsi,

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = \vec{P} + \vec{N} + \vec{F}_{\mathrm{L}} + \vec{T}$$
 soit $m\frac{\mathrm{d}v_x}{\mathrm{d}t} = -iaB + m_0\left(\frac{\mathrm{d}v_z}{\mathrm{d}t} + g\right)$.

Compte tenu du repère choisi, $v_x = -v_z$ (la masse descend si la tige se déplace vers la droite), donc

$$m\frac{\mathrm{d}v_x}{\mathrm{d}t} = -iaB + m_0 \left(g - \frac{\mathrm{d}v_x}{\mathrm{d}t}\right)$$
$$(m+m_0)\frac{\mathrm{d}v_x}{\mathrm{d}t} = -iaB + m_0 g.$$

• Équation électrique. Raisonnons sur le circuit équivalent, qui contient le générateur E, une résistance R et un générateur induit de fém e dû à l'induction. La surface du circuit vaut S=ax donc

$$\phi = \iint \vec{B} \cdot (-dS\vec{e}_z) = -axB$$
 d'où $e = -\frac{d\phi}{dt} = +av_xB$.

Par la loi des mailles,

$$E + av_x B = Ri$$

4 Commençons par le vitesse v_x de la tige mobile. En isolant l'expression de i dans l'équation électrique pour

$$(m+m_0)\frac{\mathrm{d}v_x}{\mathrm{d}t} = -aB\left(\frac{E+av_xB}{R}\right) + m_0g$$
 soit $\frac{\mathrm{d}v_x}{\mathrm{d}t} + \frac{(aB)^2}{R(m+m_0)}v_x = -\frac{aBE}{R(m+m_0)} + \frac{m_0}{m+m_0}g$

On pose $\tau = R(m+m_0)/(aB)^2$, et on en déduit

$$v_x(t) = A e^{-t/\tau} + \frac{m_0 gR}{(aB)^2} - \frac{E}{aB}.$$

Vue la géométrie, la vitesse de la masse v_z est de même norme mais de signe opposé par rapport à v_x , donc

$$v_z(t) = -A e^{-t/\tau} - \frac{m_0 gR}{(aB)^2} + \frac{E}{aB}$$

En régime asymptotique on identifie la vitesse limite de levage,

$$V_0 = -\frac{m_0 gR}{(aB)^2} + \frac{E}{aB} .$$

et on écrit la solution sous la forme

$$v_z(t) = V_0 \left(1 - e^{-t/\tau} \right).$$

 $\boxed{\mathbf{5}}$ En régime permanent à vitesse de la masse V_0 (et donc courant dans le circuit I_0 mais vitesse $v_x = -V_0$), les équations électrique et mécanique deviennent respectivement

$$E = +aV_0B + RI_0$$
 et $0 = -I_0aB + m_0g$

En multipliant comme d'habitude par I_0 et V_0 ,

$$EI_0 = +aI_0V_0B + RI_0^2$$
 et $0 = -I_0aBV_0 + m_0gV_0$

et en sommant ces deux équations

$$E I_0 = RI_0^2 + m_0 g V_0 .$$

Interprétation:

 $\triangleright EI_0$: puissance fournie par le générateur;

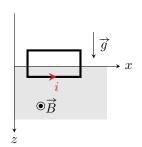
 $\triangleright RI_0^2$: puissance dissipée par effet Joule;

 $ightharpoonup m_0 g V_0$: variation d'énergie potentielle de la masse m_0 .

Exercice 5: Freinage par induction

Q 2 | **%** 2 | **®**

▶ Équations électrique et mécanique.



Lorsqu'elle pénètre dans la zone de champ magnétique, la cabine est soumise à son poids qui est vertical selon \overrightarrow{e}_z . En outre, comme le flux magnétique au travers de la spire varie, un courant induit apparaît dans la spire, responsable d'une force de Laplace. Sans préjuger du signe réel du courant induit, orientons la spire de telle sorte que la normale orientée soit dans le même sens que \overrightarrow{B} , ce qui oriente nécessairement le courant dans le sens représenté ci-contre. Sur les deux parties verticales plongées dans la zone de champ, le courant est le même mais circule dans des sens différents, donc les forces de Laplace sont opposées. En revanche, seul un des deux côtés horizontaux voit le champ magnétique et subit une force de Laplace

$$\overrightarrow{F}_{\rm L} = iaB \overrightarrow{e}_x \wedge \overrightarrow{e}_y = iaB \overrightarrow{e}_z \,.$$

Finalement, la vitesse initiale et toutes les forces subies par la cabine d'ascenseur sont dirigées selon \vec{e}_z . On en déduit que le mouvement de la cabine reste une translation le long de cet axe.

• Équation mécanique : D'après le théorème de la résultante appliquée à la cabine dans le référentiel terrestre galiléen, tant que la spire est à cheval entre la zone avec et la zone sans champ, on a par projection sur l'axe z

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = +mg + iaB.$$

 \bullet Équation électrique : Du point de vue électrique, il faut prendre en compte la résistance R de la spire et la force électromotrice induite. Calculons cette f.é.m. La surface de circuit plongée dans le champ magnétique est égale à

S(t) = az tant que la spire est à cheval entre la zone avec et la zone sans champ. Ainsi, le flux magnétique vaut

$$\phi(t) = \iint \overrightarrow{B} \cdot \overrightarrow{dS} = +azB,$$

et d'après la loi de Faraday,

$$e = -\frac{\mathrm{d}\phi}{\mathrm{d}t} = -aBv.$$

La loi des mailles appliquée dans le circuit équivalent donne

$$e = Ri$$
 soit $-aBv = Ri$.

• Découplage des équations : on dispose de deux équations, mais l'intensité du courant dans la spire est inconnue. D'après l'équation électrique,

$$i = -\frac{aB}{R}v\,,$$

ce qui donne en injectant dans l'équation mécanique

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = mg - \frac{(aB)^2}{R}v$$

ou encore

$$\boxed{\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{1}{\tau}v = g \quad \text{avec} \quad \tau = \frac{Rm}{(aB)^2}}.$$

3 La forme générale des solutions est

$$v(t) = Ae^{-t/\tau} + g\tau \,,$$

avec

$$v(0) = v_0 = A + g\tau$$
 d'où $A = v_0 - g\tau$.

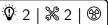
Finalement,

$$v(t) = (v_0 - g\tau) e^{-t/\tau} + g\tau.$$

L'équation et donc évidemment sa solution ne sont valables que lorsque la spire est à cheval entre la zone avec et la zone sans champ. Lorsque z > b, la boucle conductrice est intégralement dans la zone de champ magnétique si bien le flux au travers de la spire ne varie plus et le phénomène d'induction cesse. La cabine retrouve alors un mouvement de chute libre, et est de nouveau accélérée.

4 Si la cabine se trouvait complètement arrêtée, alors le flux magnétique ne varierait plus et le phénomène d'induction cesserait. La force de Laplace s'annulerait alors ... mais pas le poids de la cabine! La cabine se retrouverait donc soumise à une seule force verticale vers le bas, et serait donc à nouveau accélérée puisqu'il n'y a rien pour la retenir. On en déduit qu'un freinage magnétique ne permet pas d'arrêter complètement la cabine d'ascenseur.

Exercice 6: Haut-parleur



- De proche fréquentielle.

 ▷ Équations électrique et mécanique;

 ▷ Conservation de la puissance;

 ▷ Approche fréquentielle.

1 Raisonnons sur le tronçon de spire représenté figure 3. L'orientation de i est celle donnée par l'énoncé. La force élémentaire qu'elle subit s'écrit

$$\mathrm{d} \overrightarrow{F}_{\mathrm{L}} = i \overrightarrow{\mathrm{d} \ell} \wedge \overrightarrow{B} = i (\mathrm{d} \ell \, \overrightarrow{e}_{\theta}) \wedge (B \, \overrightarrow{e}_{r}) \qquad \mathrm{soit} \qquad \boxed{\mathrm{d} \overrightarrow{F}_{\mathrm{L}} = -i B \mathrm{d} \ell \, \overrightarrow{e}_{z} \, .}$$

Par intégration sur tout le long de la bobine, on en déduit

$$\overrightarrow{F}_{\rm L} = \int_{\rm bobine} -iB {\rm d}\ell \, \overrightarrow{e}_z \qquad {\rm soit} \qquad \left[\overrightarrow{F}_{\rm L} = -iB\ell_{\rm bob} \, \overrightarrow{e}_z \, , \right] \label{eq:FL}$$

avec ℓ_{bob} la longueur totale du fil bobiné.

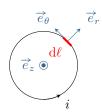


Figure 3 – Une spire du haut-parleur vue de face.

Ce calcul de la force de Laplace est officiellement hors programme \dots mais il a été demandé tel quel, sans aucune indication, à l'épreuve A 2018.

2

Système : équipage mobile ;

 \triangleright Référentiel : terrestre \mathcal{R} , supposé galiléen ;

▷ Bilan des forces :

ightarrow le poids est nécessairement compensé par une force de réaction car le mouvement est horizontal;

 \rightarrow force de Laplace $\vec{F}_{\rm L} = -iB\ell_{\rm bob}\vec{e}_z$;

 \rightarrow force de rappel du ressort $\vec{F}_{\rm r} = -k(\ell - \ell_0)\vec{u}_{\rm sortant} = -kz\vec{e}_z$;

 \rightarrow force de frottement linéaire, qui modélise l'émission du son $\vec{F}_{\rm f} = -\alpha \vec{v}$.

▷ D'après le théorème de la résultante cinétique,

$$\left. m \, \frac{\mathrm{d} \, \overrightarrow{v}_{/\mathcal{R}}}{\mathrm{d} t} \right|_{\mathcal{P}} = \overrightarrow{F}_{\mathrm{L}} + \overrightarrow{F}_{\mathrm{r}} + \overrightarrow{F}_{\mathrm{f}} \, ,$$

et en remplaçant et en projetant sur \vec{e}_z ,

$$m\frac{\mathrm{d}v_z}{\mathrm{d}t} = -iB\ell_{\mathrm{bob}} - kz - \alpha v_z.$$

3 La puissance de la force de Laplace s'écrit

$$\mathcal{P}_{\rm L} = \overrightarrow{F}_{\rm L} \cdot \overrightarrow{v} = -iB\ell_{\rm bob}v_z$$
.

On en déduit la fém induite,

$$e_{\rm ind} = -\frac{\mathcal{P}_{\rm L}}{i}$$
 soit $e_{\rm ind} = B\ell_{\rm bob}v_z$.

4 Le schéma électrique équivalent est représenté figure 4. D'après la loi des mailles,

$$u + e_{\text{ind}} = Ri + L \frac{di}{dt}$$
 soit $u + B\ell_{\text{bob}}v_z = Ri + L \frac{di}{dt}$.

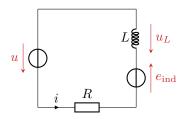


Figure 4 – Schéma électrique équivalent du haut-parleur.

5 D'après l'équation électrique,

$$\underline{V_z} = \frac{1}{B\ell_{\rm bob}} \left(R + \mathrm{j} L \omega \right) \underline{I} - \frac{1}{B\ell_{\rm bob}} \underline{U} \,.$$

On remplace dans l'équation mécanique multipliée par j ω au préalable,

$$(-m\omega^2 + j\omega\alpha + k)\frac{1}{B\ell_{\text{bob}}}[(R + jL\omega)\underline{I} - \underline{U}] = -j\omega\ell_{\text{bob}}B\underline{I}$$

On regroupe alors les termes

$$(-m\omega^2 + j\omega\alpha + k)\underline{U} = \left[(m\omega^2 - j\omega\alpha - k)(R + jL\omega) - j\omega(\ell_{\text{bob}}B)^2 \right] \underline{I},$$

ce qui conduit à

$$\underline{Z} = \underbrace{\frac{-\mathrm{j}\omega(\ell_{\mathrm{bob}}B)^2}{m\omega^2 - \mathrm{j}\omega\alpha - k}}_{=\underline{Z}_{\mathrm{m}}} + \underbrace{(R + \mathrm{j}L\omega)}_{=\underline{Z}_{\mathrm{e}}} \; .$$

Couplage électromécanique en rotation

Exercice 7 : Centrale géothermique

PT A 2023 | V 2 | X 1

23 | La turbine transmet de l'énergie mécanique à l'alternateur, qui transmet lui-même de l'énergie électrique au transformateur. La turbine réalise une transduction énergie interne (« énergie thermique ») ightarrow énergie mécanique, et l'alternateur énergie mécanique → énergie électrique. Il faut envisager des pertes visqueuses (pertes de charge) dans les canalisations, des pertes mécaniques (frottements) dans la turbine et l'alternateur, et des pertes par effet Joule dans le transformateur.

24 En un an, la centrale produit une énergie électrique totale

$$\mathcal{E}_{\rm elec} = 80 \cdot 10^3 \, \rm kW \times (365 \times 24 \, h) \simeq 80 \cdot 10^3 \times 10^4 = 8 \cdot 10^8 \, \rm kWh$$

On en déduit la masse de CO₂ produite par la centrale géothermique,

$$m_{\text{géo}} = 8 \cdot 10^8 \text{ kWh} \times 80 \text{ g} = 6 \cdot 10^{10} \text{ g} = 6 \cdot 10^4 \text{ tonnes}.$$

Une centrale à charbon produit environ 12 fois plus de ${\rm CO}_2$ que la centrale géothermique, d'où

$$m_{\rm char} = 7 \cdot 10^5 \, {\rm tonnes} \, .$$

Le dispositif est constitué d'un circuit électrique en mouvement dans un champ magnétique.

26 | La normale \vec{n} au circuit C est inclinée d'un angle θ par rapport à la direction du champ magnétique. Le flux total au travers du circuit étant la somme des flux au travers des différentes spires,

$$\Phi = \iint_{\mathcal{C}} \overrightarrow{B} \cdot \overrightarrow{dS} = N \iint_{1\text{sp}} B_0 \overrightarrow{e}_x \cdot dS \overrightarrow{n} = N(2a)^2 B_0 \cos \theta.$$

D'après la loi de Faraday, la fém induite vaut donc

$$e = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = +4a^2 N B_0 \dot{\theta} \sin \theta = 4a^2 N B_0 \omega \sin(\omega t).$$

Le champ propre étant négligé, l'auto-induction des bobinages n'est pas à prendre en compte, et le circuit électrique équivalent ne contient que le générateur induit, de fém e, et la résistance R. Ainsi, d'après la loi d'Ohm,

$$e = Ri$$
 donc $i = \frac{4a^2 N B_0 \omega}{R} \sin(\omega t)$.

Chaque spire a un moment magnétique

$$\overrightarrow{M} = (2a)^2 i \overrightarrow{n} = 4a^2 i (\cos \theta \overrightarrow{e}_x + \sin \theta \overrightarrow{e}_y).$$

En additionnant les effets de toutes les spires, le couple résultant total

$$\overrightarrow{\Gamma}_{\rm L} = N \overrightarrow{M} \wedge \overrightarrow{B} = -4Na^2 i \sin \theta \, \overrightarrow{e}_z \, .$$

En reprenant l'expression de i et celle de θ , on trouve

$$\overrightarrow{\Gamma}_{\rm L} = -\frac{16N^2a^4B_0\omega}{R}\sin^2(\omega t)\overrightarrow{e}_z.$$

On trouve que le couple de Laplace s'oppose à tout instant à la rotation du circuit, en sens direct autour de (Oz), ce qui est cohérent avec la loi de Lenz.

28 Le bobinage tourne en sens direct autour de l'axe (Oz), mais $\overrightarrow{\Gamma}_L \cdot \overrightarrow{e}_z < 0$. Le couple de Laplace est résistance, il faut donc exercer un **couple moteur** pour que la vitesse de rotation demeure constante : c'est ce que fait la turbine. En régime permanent,

$$\overrightarrow{\Gamma}_{\rm L} + \overrightarrow{\Gamma}_{\rm turb} = \overrightarrow{0} \qquad {\rm d'où} \qquad \boxed{\overrightarrow{\Gamma}_{\rm turb} = + \frac{16N^2a^4B_0\omega}{R}\sin^2(\omega t)\overrightarrow{e}_z \, .}$$

29 | La puissance du couple de Laplace vaut

$$\mathcal{P}_{L} = \overrightarrow{\Gamma}_{L} \cdot \omega \overrightarrow{e}_{z} = -\frac{16N^{2}a^{4}B_{0}\omega^{2}}{R}\sin^{2}(\omega t)$$

En moyenne dans le temps, puisque $\langle \sin^2(\omega t) \rangle = 1/2$,

$$\boxed{\langle \mathcal{P}_{\rm L} \rangle = -\frac{8N^2 a^4 B_0 \omega^2}{R} \, .}$$

30 La puissance reçue par la résistance s'écrit

$$\mathcal{P}_R = Ri^2 = \frac{16N^2a^4B_0\omega^2}{R}\sin^2(\omega t)$$

et de même en moyenne temporelle

$$\left| \langle \mathcal{P}_R \rangle = \frac{8N^2 a^4 B_0 \omega^2}{R} \, . \right|$$

On constate que

$$\mathcal{P}_{L} + \mathcal{P}_{R} = 0,$$

c'est la conservation de la puissance lors de la conversion électromécanique : toute la puissance mécanique prélevée est intégralement restituée sous forme de puissance électrique.

Exercice 8: Moteur synchrone

Équations électrique et mécanique;Moment cinétique.

Les notations utilisées dans tout l'exercice sont présentées figure 5.

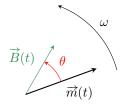


Figure 5 – Notations pour l'étude du moteur synchrone.

1 On peut utiliser deux bobines dont les axes forment un angle de $\pi/2$ et alimentées par des courants déphasés d'autant. Cependant, EDF fournit du courant triphasé, c'est-à-dire trois sorties (les phases) déphasées de $2\pi/3$ les unes par rapport aux autres. La solution technologique la plus simple consiste donc à utiliser trois bobines dont les axes se coupent en un même point et inclinées de $2\pi/3$ les unes par rapport aux autres, comme indiqué sur la figure 6.

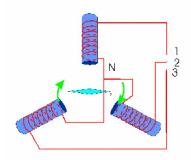


Figure 6 – Champ tournant généré par trois bobines. Chacune des bobines est reliée à une phase de l'alimentation de secteur et au neutre, qui joue le rôle de masse.

2 Appliquons le théorème du moment cinétique au rotor dans le référentiel du stator. Lorsque le moteur tourne à vide, il n'est soumis qu'au couple magnétique M. D'après la loi du moment cinétique,

$$\frac{\mathrm{d}\vec{L}}{\mathrm{d}t} = \overrightarrow{\mathcal{M}} = \overrightarrow{m} \wedge \overrightarrow{B}$$

mais comme on s'intéresse au régime permanent,

$$\frac{\mathrm{d}\vec{L}}{\mathrm{d}t} = \vec{0}$$
 donc $\vec{m} \wedge \vec{B} = \vec{0}$.

On en déduit que \vec{m} et \vec{B} sont colinéaires, c'est-à-dire $\theta = 0$.

3 Toujours en régime permanant, le couple moteur et le moment résistant se compensent vectoriellement,

$$\overrightarrow{m} \wedge \overrightarrow{B} + \overrightarrow{\mathcal{M}}_{\mathbf{r}} = \overrightarrow{0}$$

donc en norme

$$mB\sin\theta = \mathcal{M}_{\rm r}$$
 soit $\theta = \arcsin\frac{\mathcal{M}_{\rm r}}{mB} = 24^{\circ}$.

L'angle θ est bien positif, d'une part car il est défini de \overrightarrow{m} vers \overrightarrow{B} , et d'autre part car le couple résistant a forcément pour effet de retarder le rotor par rapport au champ. De façon générale, lorsque le moteur entraîne une charge, le moment magnétique suit le champ mais avec un angle interne d'autant plus grand que le couple résistant est important. La puissance fournie par le moteur vaut

$$\mathcal{P} = \mathcal{M}_{\rm r}\omega$$
 donc $\mathcal{P} = mB\omega\sin\theta = 205\,\mathrm{W}$.

Cette puissance provient du générateur électrique qui alimente les bobines produisant le champ tournant.

4 La question précédente montre que $mB \sin \theta = \mathcal{M}_r$, c'est-à-dire que la charge mécanique entraînée (décrite par le moment $\mathcal{M}_{\rm r}$) n'a d'influence que sur l'angle interne θ mais pas sur la vitesse de rotation. C'est d'ailleurs un des avantages de la machine synchrone par rapport à la machine asynchrone. Le couple maximal que peut fournir le moteur est obtenu pour $\sin \theta = 1$, soit

$$\mathcal{M}_{\text{max}} = mB = 1.6 \,\text{N} \cdot \text{m}$$
.

Au delà, le couple exercé par le champ sur le rotor est trop faible pour le mettre en mouvement.

Exercice 9: Moteur asynchrone

- Equations électrique et mécanique;
 Moment cinétique;
 Approche fréquentielle.

1 Supposons la spire immobile. Du fait de la rotation du champ tournant, le flux magnétique au travers de la spire varie. Il y a donc un phénomène d'induction, qui génère un courant dans la spire. Ce courant a pour conséquence l'apparition d'un moment magnétique qui tend à s'aligner avec le champ. Comme le champ tourne, la spire tourne également. On peut donner une vision équivalente à partir de la loi de Lenz : l'effet du courant induit est de diminuer les variations de flux magnétique au travers de la spire, et donc de chercher à donner à la spire une orientation constante par rapport au champ \overrightarrow{B} . Comme le champ tourne, la spire tourne également.

Les deux vitesses de rotation ne peuvent pas être égales. Si tel était le cas, en se plaçant dans le référentiel de la spire, le champ magnétique serait fixe et de norme constante, et il ne pourrait donc plus y avoir d'induction. La spire ralentirait alors en raison des frottements ... ce qui impliquerait de nouveau un phénomène d'induction.

 $\boxed{\mathbf{2}}$ À l'instant t, \overrightarrow{n} forme avec \overrightarrow{e}_z un angle ωt et \overrightarrow{B} un angle $\omega' t$. L'angle θ vaut donc

$$\theta(t) = \omega' t - \omega t = \Omega t.$$

La vitesse de glissement Ω est la vitesse angulaire à laquelle \vec{n} et \vec{B} se décalent l'un par rapport à l'autre.

3 • Circuit électrique équivalent : voir figure 7. Il n'y a pas de couplage inductif à prendre en compte. Le sens de i et de e doit être le même pour pouvoir appliquer la loi de Faraday.

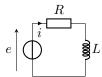


Figure 7 – Schéma électrique équivalent à la machine asynchrone.

ullet Calcul de la fém induite : Le flux magnétique au travers de la spire à l'instant t est égal à

$$\phi(t) = S\vec{B} \cdot \vec{n} = SB\cos\theta = SB\cos(\Omega t)$$
.

On en déduit la f.é.m. induite par le champ extérieur par la loi de Faraday,

$$e = -\frac{\mathrm{d}\phi}{\mathrm{d}t} = SB\dot{\theta}\sin\theta$$
 soit $e = SB\Omega\sin(\Omega t)$.

• Équation électrique : d'après la loi des mailles,

$$e = Ri + L\frac{\mathrm{d}i}{\mathrm{d}t}$$
 soit $\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{R}{L}i = \frac{SB}{L}\Omega\sin(\Omega t)$.

L'équation différentielle décrit un circuit en forçage harmonique de pulsation Ω . La pulsation du courant dans la bobine en régime permanent est donc Ω .

Passer l'équation différentielle en représentation complexe pose une difficulté à cause du terme de droite. En représentation complexe $\cos \Omega t \mapsto e^{\mathrm{j}\Omega t}$, donc

$$\sin \Omega t = \cos \left(\Omega t - \frac{\pi}{2}\right) \quad \longmapsto \quad e^{j(\Omega t - \pi/2)} = -j e^{j\Omega t}.$$

Plus astucieux, on peut aussi noter que ce terme de droite s'écrit

$$\frac{\underline{E}_{ind}}{L} = -\frac{j\Omega}{L}\underline{\Phi} = \frac{j\Omega SB}{L}$$

L'équation différentielle devient

$$j\Omega \underline{I} e^{j\Omega t} + \frac{R}{L} \underline{I} e^{j\Omega t} = -j\Omega \frac{SB}{L} e^{j\Omega t}$$

ce qui donne

$$\frac{\mathrm{j}L\Omega + R}{L}\,\underline{I} = -\mathrm{j}\Omega\,\frac{SB}{L}$$

soit

$$\underline{I} = -\frac{\mathrm{j}\Omega \, SB}{R + \mathrm{j}L\Omega} = \frac{-\mathrm{j}\Omega \, SB \, (R - \mathrm{j}L\Omega)}{R^2 + L^2\Omega^2} = -\frac{\Omega SB}{R^2 + L^2\Omega^2} \, (\mathrm{j}R + L\Omega)$$

et enfin

$$\underline{I}\,\mathrm{e}^{\mathrm{j}\Omega t} = -\frac{\Omega SB}{R^2 + L^2\Omega^2} \left(L\Omega - \mathrm{j}R\right) \left(\cos\Omega t + \mathrm{j}\sin\Omega t\right)\,.$$

On peut alors en déduire $i(t) = \text{Re}\left[\underline{I} e^{j\Omega t}\right]$ soit

$$i(t) = -\frac{\Omega SB}{R^2 + L^2 \Omega^2} \left(L\Omega \cos \Omega t - R \sin \Omega t \right) \, .$$

5 Le moment magnétique de la spire est égal à $\vec{m}(t) = i(t) S \vec{n}(t)$, et le couple magnétique auquel la spire est soumise vaut

$$\overrightarrow{\Gamma}(t) = \overrightarrow{m}(t) \wedge \overrightarrow{B} = ||\overrightarrow{m}|| \, ||\overrightarrow{B}|| \sin \theta(t) \, \overrightarrow{e}_x \qquad \text{d'où} \qquad \boxed{\overrightarrow{\Gamma} = i(t) \, S \, B \sin \Omega t \, \overrightarrow{e}_x}$$

d'où

$$\Gamma = i(t) \, S \, B \sin \Omega t \qquad \text{soit} \qquad \boxed{\Gamma = -\frac{\Omega(SB)^2}{R^2 + L^2 \Omega^2} \left(L\Omega \cos \Omega t - R \sin \Omega t \right) \sin \Omega t \, .}$$

En moyenne, $\langle \sin^2 \Omega t \rangle = 1/2$ et $\langle \sin \Omega t \cos \Omega t \rangle = 0$, d'où

6 Lorsque la vitesse de rotation est nulle, $\omega = 0$ et $\Omega = \omega'$. Le couple moyen exercé sur le rotor est donc non-nul : le moteur asynchrone est donc en mesure de démarrer seul.

7 | En régime permanent, le couple moteur moyen $\langle \Gamma \rangle$ doit compenser le couple résistant. Le point de fonctionnement $\overline{\mathrm{du}}$ moteur asynchrone correspond donc à la (aux) vitesse(s) de rotation ω telle(s) que $\langle \Gamma \rangle = \Gamma_{\mathrm{r}}$. Les deux cas sont représentés figure 8 : le(s) point(s) de fonctionnement sont situés aux intersections des courbes. Dans le premier cas, un seul point de fonctionnement est possible, et la charge est entraînée à une vitesse de rotation ω légèrement inférieure à ω' . Dans le second cas, deux points de fonctionnement sont envisageables. Celui à plus basse vitesse de rotation est instable : si le couple résistant augmente par exemple sous l'effet d'une perturbation, alors d'après la loi du moment cinétique la vitesse de rotation du moteur diminue ... mais dans ce cas le couple moteur moyen diminue aussi. Le moteur ne peut donc plus entraîner la charge et décroche. Au contraire, pour le point de fonctionnement à plus haute vitesse de rotation, le couple moteur augmente si ω diminue, ce qui permet de compenser la perturbation.

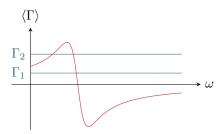


Figure 8 – Points de fonctionnement du moteur asynchrone. Les points de fonctionnement sont les points d'intersection des droites bleues représentant le couple résistant et de la courbe rouge représentant le couple moteur moyen.

Couplage inductif entre circuits

Exercice 10 : Impédance apparente d'une bobine couplée inductivement

- 1 En présence d'induction mutuelle, les lois de comportement des bobines s'écrivent

$$u_1 = L_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} + M \frac{\mathrm{d}i_2}{\mathrm{d}t} \quad \text{et} \quad u_2 = L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} + M \frac{\mathrm{d}i_1}{\mathrm{d}t}.$$

En appliquant la loi des mailles dans les deux circuits couplés, il vient alors

$$\begin{cases} e_0 = R_1 i_1 + L_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} + M \frac{\mathrm{d}i_2}{\mathrm{d}t} \\ 0 = R_2 i_2 + L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} + M \frac{\mathrm{d}i_1}{\mathrm{d}t} \end{cases}$$

2 En représentation complexe, ces équations deviennent

$$\begin{cases} \underline{E_0} = R_1 \underline{I_1} + j\omega L_1 \underline{I_1} + jM\omega \underline{I_2} \\ 0 = R_2 \underline{I_2} + jL_2\omega \underline{I_2} + jM\omega \underline{I_1} \end{cases}$$

De la deuxième équation on déduit

$$\underline{I_2} = -\frac{\mathrm{j}M\omega}{R_2 + \mathrm{j}L_2\omega}\underline{I_1}$$

et en injectant dans la première

$$\underline{E_0} = R_1 \underline{I_1} + \left(j L_1 \omega - \frac{(j M \omega)^2}{R_2 + i L_2 \omega} \right) \underline{I_1}.$$

En factorisant par j ω on en déduit l'impédance apparente :

$$L_{\rm app} = L_1 - \frac{\mathrm{j} M^2 \omega}{R_2 + \mathrm{j} L_2 \omega} .$$

Les détecteurs de métaux fonctionnent sur ce principe : le circuit ① modélise le détecteur et le circuit ② le métal à détecter. La création de courant induit dans le métal modifie l'impédance apparente de la bobine du circuit détecteur, ce qui est facilement mesurable.

3 Pour réaliser un bilan de puissance, il faut multiplier les lois des mailles par les courants puis sommer.

$$\begin{cases} e_0 i_1 = R_1 i_1^2 + L_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} i_1 + M \frac{\mathrm{d}i_2}{\mathrm{d}t} i_1 \\ 0 = R_2 i_2^2 + L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} i_2 + M \frac{\mathrm{d}i_1}{\mathrm{d}t} i_2 \end{cases}$$

ce qui donne en sommant

$$e_0 i_1 = R_1 i_1^2 + R_2 i_2^2 + L_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} i_1 + L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} i_2 + M \frac{\mathrm{d}i_2}{\mathrm{d}t} i_1 + M \frac{\mathrm{d}i_1}{\mathrm{d}t} i_2$$

et on peut alors identifier des dérivées,

$$e_0 i_1 = R_1 i_1^2 + R_2 i_2^2 + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} L_1 i_1^2 + \frac{1}{2} L_2 i_2^2 + M i_1 i_2 \right).$$

On peut alors interpréter chacun des termes :

- \triangleright le générateur fournit une puissance $e_0 i_1$;
- ▷ une partie $R_1i_1^2 + R_2i_2^2$ est dissipée par effet Joule dans les deux circuits; ▷ le reste modifie l'énergie emmagasinée sous forme magnétique $\frac{1}{2}L_1i_1^2 + \frac{1}{2}L_2i_2^2 + Mi_1i_2$.

Sans surprise, le couplage inductif a un effet sur l'énergie magnétique stockée. Plus intéressant, le terme $R_2i_2^2$ montre que de l'énergie est dissipée dans le circuit 2 alors qu'aucun générateur ne lui en fournit : on réalise de la transmission d'énergie sans contact! Ici ce n'est « que » de l'effet Joule, donc pas très intéressant, mais on peut en faire plein de choses bien.

Par exemple, les stations de recharge sans fil utilisables pour de nombreux appareils électroniques reposent sur ce principe.

Exercice 11 : Mesure d'une inductance mutuelle

- ▷ Inductance mutuelle;
 ▷ Approche temporelle et fréquentielle.

1 Comme l'oscilloscope est idéal, tout se passe comme si la bobine 2 était en circuit ouvert, le courant la traversant est donc nul: $\forall t, i_2(t) = 0$. D'après la loi de comportement, on aurait

$$u_2 = L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} = 0 \qquad \dots \text{ ce qui est faux!}$$

La loi de comportement de la bobine n'est pas applicable ici car elle est établie en ne tenant compte que de l'autoinduction alors qu'ici il faut également prendre en compte l'induction mutuelle entre les deux bobines L_1 et L_2 .

2 En prenant en compte l'induction mutuelle, la loi de comportement devient

$$u_2 = L \frac{\mathrm{d}i_2}{\mathrm{d}t} + M \frac{\mathrm{d}i_1}{\mathrm{d}t} = M \frac{\mathrm{d}i_1}{\mathrm{d}t} \,,$$

puis d'après la loi d'Ohm on a simplement

$$u_2 = \frac{M}{R} \frac{\mathrm{d}u_1}{\mathrm{d}t} \,.$$

3 Traduisons la relation précédente en représentation complexe :

$$\underline{U}_2 = \mathrm{j}\omega \frac{M}{R}\underline{U}_1$$
.

Comme $U_{1,2} = |\underline{U}_{1,2}|$ alors

$$U_2 = \omega \, rac{M}{R} \, U_1 \qquad ext{d'où} \qquad \boxed{M = rac{R \, U_2}{2 \pi \, f \, U_1} = 1.3 \, ext{mH} \, .}$$

4 | Description Lorsque la bobine 2 est tournée de 180°, elle retrouve exactement la configuration géométrique de départ excepté $\overline{\text{le sens}}$ de branchement des fils, qui est inversé : on mesure alors $u_2'=-u_2$, et le même calcul que précédement montre que la valeur de M est inchangée.

> En toute rigueur, M change de signe, mais le signe d'une inductance mutuelle dépend des orientations des courants, donc de conventions, et n'a donc pas vraiment de pertinence physique.

- ▶ Lorsque la bobine est tournée de 90°, beaucoup moins de lignes du champ magnétique créé par la bobine 1 peuvent traverser la bobine 2, si bien que le flux $\phi_{1\rightarrow 2}$ est nettement diminué à courant i_1 fixé, ce qui veut dire que M est plus faible.
- ▷ Au contraire, si la bobine 2 est placée sur le même axe que la bobine 1 alors davantage de lignes de champ issues de la bobine 1 traversent la bobine 2, donc le flux $\phi_{1\rightarrow 2}$ est plus élevé à courant i_1 fixé, donc M est plus grande.

Exercice 12 : Réponse à un échelon de circuits couplés

oral banque PT | $\widehat{\mathbb{V}}$ 1 | $\widehat{\mathbb{X}}$ 2

Induction mutuelle.

1 D'après la loi des mailles appliquée à chaque circuit,

$$Ri_1 + L\frac{\mathrm{d}i_1}{\mathrm{d}t} + M\frac{\mathrm{d}i_2}{\mathrm{d}t} = U_0 \qquad \text{et} \qquad Ri_2 + L\frac{\mathrm{d}i_2}{\mathrm{d}t} + M\frac{\mathrm{d}i_1}{\mathrm{d}t} = 0 \,.$$

2 En sommant les deux équations précédentes,

$$R(i_1 + i_2) + L\frac{d}{dt}(i_1 + i_2) + M\frac{d}{dt}(i_1 + i_2) = U_0$$
 soit $Ri + (L + M)\frac{di}{dt} = U_0$

soit sous forme canonique

$$\boxed{\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{1}{\tau_1}i = \frac{U_0}{L+M} = \frac{U_0}{R\tau_1}}.$$

Réciproquement, en soustrayant les équations,

$$R(i_1 + i_2) + L\frac{d}{dt}(i_1 - i_2) + M\frac{d}{dt}(i_2 - i_1) = U_0$$
 soit $Rj + (L - M)\frac{dj}{dt} = U_0$

soit sous forme canonique

$$\frac{\mathrm{d}j}{\mathrm{d}t} + \frac{1}{\tau_2}j = \frac{U_0}{L - M} = \frac{U_0}{R\tau_2}.$$

3 Par continuité du courant dans une bobine, on a juste après fermeture de l'interrupteur

$$i_1(0^+) = i_2(0^+) = 0$$
 donc $i(0^+) = j(0^+) = 0$.

On en déduit

$$i(t) = \frac{U_0}{R\tau_1} (1 - e^{-t/\tau_1})$$
 et $j(t) = \frac{U_0}{R\tau_2} (1 - e^{-t/\tau_2})$.

On détermine ensuite

$$i_1(t) = \frac{i+j}{2} = \frac{U_0}{2R} \left(\frac{1 - e^{-t/\tau_1}}{\tau_1} + \frac{1 - e^{-t/\tau_2}}{\tau_2} \right) \qquad \text{et} \qquad i_2(t) = \frac{i-j}{2} = \frac{U_0}{2R} \left(\frac{1 - e^{-t/\tau_1}}{\tau_1} - \frac{1 - e^{-t/\tau_2}}{\tau_2} \right)$$

Exercice 13 : Plaque de cuisson à induction

▷ Induction mutuelle;
 ▷ Approche temporelle et fréquentielle.

1 Le schéma électrique équivalent est représenté figure 9.

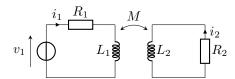


Figure 9 – Schéma équivalents à une plaque à induction.

Par application de la loi des mailles, et en tenant compte de l'induction mutuelle, on obtient

$$\begin{cases} v_1 = R_1 i_1 + L_1 \frac{di_1}{dt} + M \frac{di_2}{dt} \\ 0 = R_2 i_2 + L_2 \frac{di_2}{dt} + M \frac{di_1}{dt} \end{cases}$$

Traduisons l'équation de fonctionnement de l'induit (circuit 2) en complexes,

$$0 = R_2 \underline{I}_2 + j\omega L_2 \underline{I}_2 + j\omega M \underline{I}_1,$$

ce qui conduit à

$$H = -\frac{\mathrm{j}M\omega}{R_2 + \mathrm{j}\omega L_2}$$

3 D'après l'équation de fonctionnement de l'inducteur,

$$\underline{V}_1 = (R_1 + \mathrm{j}\omega L_1)\underline{I}_1 + \mathrm{j}\omega M\underline{I}_2 \qquad \text{d'où} \qquad \underline{Z}_\mathrm{e} = R_1 + \mathrm{j}\omega L_1 + \mathrm{j}M\omega\underline{H} \qquad \text{soit} \qquad \boxed{\underline{Z}_\mathrm{e} = R_1 + \mathrm{j}\omega L_1 + \frac{(M\omega)^2}{R_2 + \mathrm{j}\omega L_2}}\,.$$

4 Dans l'hypothèse très haute fréquence, les expressions se simplifient en

$$\underline{H} = -\frac{M}{L_2}$$
 et $\underline{Z}_{e} = \mathrm{j}L_1\omega\left(1 - \frac{M^2}{L_1L_2}\right)$

Numériquement,

$$\boxed{ \left| \frac{\underline{I}_2}{\underline{I}_1} \right| = 8.3 \qquad \text{et} \qquad |\underline{Z}_{\text{e}}| = 2.1 \, \Omega \, .}$$

On remarque que la qualité du couplage inductif apparaît dans l'expression de $\underline{Z}_{\mathrm{e}}$: si le couplage est parfait, $M=\sqrt{L_1\,L_2}$, alors l'impédance d'entrée du système est nulle, signe d'une transmission parfaite de l'énergie électromagnétique. On retrouve exactement le même résultat à propos du transformateur.

Remarquons aussi que la différence de nombre de spires dans l'inducteur et l'induit permet au courant à l'induit d'être nettement supérieur au courant à l'inducteur, et donc de fournir davantage d'effet Joule dans le fond de la casserole.

Qualitativement, si l'on éloigne la casserole le couplage sera moins bon (M diminue) et donc **l'impédance** d'entrée augmente. Plus précisément, comme la casserole est éloignée de l'inducteur qui est source de champ magnétique, le flux vu par l'induit diminue combien même le courant dans l'inducteur serait imposé, ce qui indique que M diminue. Si l'impédance d'entrée augmente alors que la tension d'alimentation v_1 ne change pas, alors la définition de $Z_{\rm e}$ montre que l'inducteur appelle moins de courant.