Modéliser la lumière

Exercice C1: Longueur d'onde d'un laser dans l'air et dans l'eau

Un laser rouge émet un rayonnement de longueur d'onde dans le vide $\lambda_0 = 633 \,\mathrm{nm}$. Déterminer la longueur d'onde λ' si l'onde vient à pénétrer dans l'eau d'indice optique $n_{\mathrm{eau}} = 1,33$. La couleur du laser change-t-elle?

Exercice C2 : Nombre de photons envoyés par un laser

On considère un laser rouge de longueur d'onde $\lambda \sim 600\,\mathrm{nm}$ et de puissance $P=1\,\mathrm{mW}$. Calculer l'ordre de grandeur du nombre de photons qu'il envoie en $\Delta t = 1\cdot 10^{-2}\,\mathrm{s}$, c'est-à-dire moins que la persistance rétinienne.

Exercice C3 : Validité du modèle géométrique

Considérons de la lumière passant au travers d'un diaphragme de taille a.

- ▶ Quel phénomène pourrait mettre en défaut le modèle de propagation rectiligne ?
- \triangleright Estimer l'ordre de grandeur de a à partir duquel il devient négligeable.

Exercice C4 : Valeur maximale de l'angle de réfraction

Les notations sont celles du cours, paragraphe sur la loi de la réfraction. Supposons $n_1 < n_2$.

- ▶ Donner un exemple de milieux qui vérifient cette condition.
- \triangleright Représenter la situation sur un schéma. À partir de ce schéma, expliquer qualitativement pourquoi le rayon réfracté existe toujours et pourquoi l'angle de réfraction θ_2 admet une valeur maximale $\theta_{2,\max}$.
- \triangleright Calculer $\theta_{2,\max}$ en fonction des indices n_1 et n_2 .

Exercice C5 : Condition de réflexion totale

Les notations sont celles du cours, paragraphe sur la loi de la réfraction. Supposons maintenant $n_1 > n_2$.

- $\,\vartriangleright\,$ Donner un exemple de milieux qui vérifient cette condition.
- \triangleright Représenter la situation sur un schéma. À partir de ce schéma, expliquer qualitativement pourquoi il existe une valeur limite $\theta_{1,\text{lim}}$ de l'angle d'incidence au delà de laquelle le rayon réfracté ne peut plus exister.
- \triangleright Calculer $\theta_{1,\lim}$ en fonction des indices n_1 et n_2 .
- \triangleright Comment interpréter la similitude avec l'expression de $\theta_{2,\max}$ établie précédemment ?