Cinétique

- Difficulté d'analyse et compréhension, initiative requise ;
- X Difficulté technique et calculatoire ;
- **Exercice** important.

Flasher ou cliquer pour accéder au corrigé

Se préparer

Applications de cours

Ces applications de cours sont des briques élémentaires des raisonnements à mener dans les exercices : les maîtriser est incontournable. Elles sont toutes traitées de manière exhaustive dans le cours.

 ${\bf C1.1}$ - La réaction $2\,{
m NH}_{3({
m g})}={
m N}_{2({
m g})}+3{
m H}_{2({
m g})}$ est d'ordre 0. Déterminer la loi d'évolution $[{
m NH}_3](t)$. Le calcul sera mené par séparation de variables.

 $\mathbf{C1.2}$ - La réaction $2\,\mathrm{I^-} + \mathrm{S}_2\mathrm{O}_8^{2-} = \mathrm{I}_2 + 2\,\mathrm{SO}_4^{2-}$ est d'ordre 1 par rapport aux deux réactifs. On se place en situation de dégénérescence de l'ordre par rapport à $S_2O_8^{2-}$. Expliquer ce que cela signifie, et établir la loi d'évolution $[I^-](t)$. Le calcul sera mené par séparation de variables.

La loi de vitesse s'écrit dans ce cas $v \simeq k[I^-][S_2O_8^{2-}]_0 = k_{app}[I^-]$, d'où on déduit (cf. application 5 pour un calcul identique)

 $[I^{-}](t) = [I^{-}]_0 e^{-2k_{app}t}$.

 ${\bf C1.3}$ - La réaction 2 I $^-$ + S $_2{\bf O}_8^{2-}$ = I $_2$ + 2 SO $_4^{2-}$ est d'ordre 1 par rapport aux deux réactifs. On travaille en proportions stoëchiométriques : en déduire la relation à imposer entre les concentrations initiales puis la loi de vitesse apparente en fonction de $[S_2O_8^{2-}](t)$. Établir la loi d'évolution $[S_2O_8^{2-}](t)$.

On doit prendre $[I^-]_0 = 2[S_2O_8^{2-}]_0$, ce qui reste vrai à tout instant (cf. application 7 pour un calcul identique). On a alors $v = k[I^-][S_2O_8^{2-}] = 2k[S_2O_8^{2-}]^2$ d'où on déduit (cf. application 6 pour un calcul identique à un facteur 2 près)

$$v = k[I^-][S_2O_8^{2-}] = 2k[S_2O_8^{2-}]^2$$

$$[S_2O_8^{2-}](t) = \frac{[S_2O_8^{2-}]_0}{1 + 2k[S_2O_8^{2-}]_0t}.$$

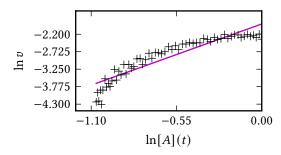
C1.4 - Considérons une réaction d'un unique réactif A ayant une loi de vitesse $v = k[A]^p$. On dipose de mesures de [A](t). Expliquer comment estimer p par la méthode différentielle : justifier le tracé à réaliser, et comment calculer numériquement les grandeurs utiles à partir des mesures.

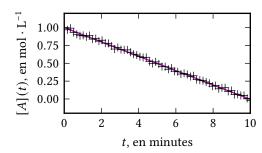
Cahier d'Entraînement

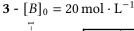
Le *Cahier d'Entraînement* est un projet collaboratif mené par des enseignants de CPGE, proposant aux étudiants des entraînements leur permettant de travailler en autonomie sur des techniques et « réflexes » utiles dans les exercices, en particulier calculatoires. Il est librement téléchargeable en scannant ou cliquant sur le QR-code ci-contre.

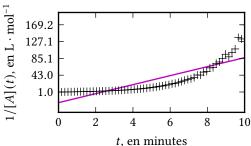
→ pour ce chapitre : 22.9, 22.11, 24.2, 24.7, 24.8, 24.9, 25.3, 25.5, 25.7 à 25.12.

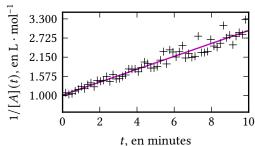
Exercice 1 : Analyse de courbes

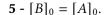


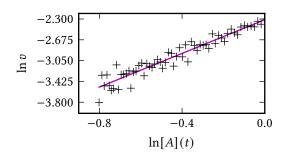

- Méthode intégrale;
- Méthode différentielle.

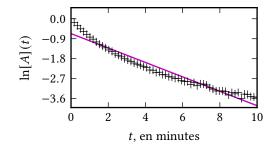

On simule numériquement des réactions du type $A + B \longrightarrow \text{produits}$. La concentration initiale en espèce A vaut toujours $[A]_0 = 1,0 \text{ mol} \cdot L^{-1}$. Elle est « mesurée » en continu au cours de la réaction, et donne lieu aux courbes ci-dessous. Que peut-on dire sur l'ordre de la réaction dans les différents cas?


1 - B est le solvant.


2 - $[B]_0 = [A]_0$.






4 - B est le solvant.

6 - Un système extérieur impose [*B*] constante.

Exercice 2 : Calcul d'une énergie d'activation

▶ Loi d'Arrhénius.

Calculer l'énergie d'activation d'une réaction dont la vitesse double lorsque la température à laquelle elle est réalisée passe de 300 K à 400 K, toutes choses égales par ailleurs.

Autour de la méthode intégrale

Exercice 3 : Décoloration de l'érythrosine B

- Suivi spectrophotométrique;
- ▶ Cinétique d'ordre 1 et 2.

L'érythrosine B (*E*127) est un colorant azoïque apparenté à l'éosine et utilisé pour colorer les aliments ou pour teinter les préparations microscopiques et les médicaments. En présence d'hypochlorite ClO¯, un des constituants de l'eau de Javel, la coloration s'atténue progressivement sous l'effet de la réaction

$$E127 + ClO_{(aq)}^{-} \longrightarrow produits incolores$$
.

On cherche la loi de vitesse de la réaction sous la forme

$$v = k[E127]^{\alpha} [CIO^{-}]^{\beta}.$$

On prépare dans quatre béchers les solutions listées dans le tableau ci-dessous à partir d'une solution d'hypochlorite de sodium de concentration $C=0.80~\mathrm{mol}\cdot\mathrm{L}^{-1}$. À chacune de ces solutions, on ajoute à un instant pris comme origine des temps $10.0~\mathrm{mL}$ d'une solution aqueuse de E127 de concentration $C'=8.4\cdot10^{-6}~\mathrm{mol}\cdot\mathrm{L}^{-1}$. On suit alors l'évolution temporelle de l'absorbance à $530~\mathrm{nm}$, longueur d'onde à laquelle on considère que seul le colorant azoïque absorbe. L'ensemble des manipulations est réalisé à $298~\mathrm{K}$.

Solution nº	1	2	3	4
Solution d'hypochlorite (mL)	3,0	6,0	9,0	12,0
Eau distillée (mL)	17,0	14,0	11,0	8,0

- ${f 1}$ Calculer les concentrations initiales en ClO $^-$ et E127 dans la solution 1 et proposer une expression simplifiée de la loi de vitesse faisant apparaître une constante de vitesse apparente à définir.
- ${f 2}$ Exprimer la concentration [E127] (t) en fonction de l'absorbance A(t) et de valeurs mesurables à l'instant initial.
- 3 Montrer que dans l'hypothèse $\alpha=1$ ou 2, l'une des deux courbes de la figure 1 doit s'identifier à une droite. En déduire la valeur probable de α .
- **4** Déterminer la constante de vitesse apparente $k_{\text{app},1}$ à 298 K.
- ${f 5}$ On exploite de même les résultats des manipulations 1 à 4 indiquées ci-dessous. Déterminer la valeur de l'ordre partiel ${f \beta}$ et la valeur de la constante de vitesse ${f k}$ à 298 K.

Solution no	1	2	3	4	5
$[ClO^-]_0 \text{ (mol} \cdot L^{-1})$	0,0800	0,100	0,160	0,240	0,320
k_{app} (unité SI)	?	$2,75 \cdot 10^{-3}$	$4,40\cdot10^{-3}$	$6,60 \cdot 10^{-3}$	$8,80 \cdot 10^{-3}$

Exercice 4 : Décomposition de l'éthanal

oral CCINP PSI | 2 | 3 | 8

- Suivi manométrique;
- ▶ Cinétique d'ordre 2;
- ▶ Temps de demi-réaction.

On place n_0 moles d'éthanal CH_3CHO seul dans une enceinte fermée, indéformable, de volume V à la température T. À l'instant initial, la pression dans l'enceinte est p_0 . Il se décompose en en CH_4 et CO. Tous les composés sont gazeux.

- 1 Nommer les espèces, construire leur schéma de Lewis, et écrire l'équation de réaction.
- **2** Construire le tableau d'avancement à l'instant t en fonction de l'avancement $\xi(t)$.

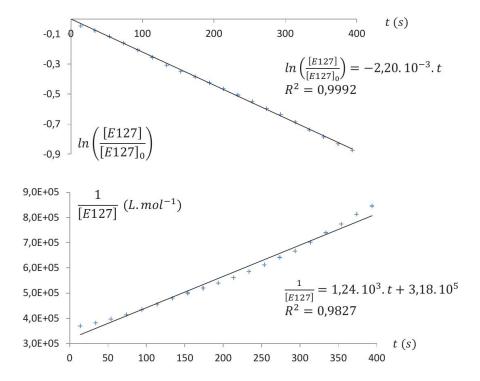


Figure 1 – Suivi cinétique de la décoloration de l'érythrosine. Courbes obtenues à partir de la solution 1.

3 - Montrer que l'on peut suivre l'avancement par la mesure d'une seule grandeur physique.

On constate expérimentalement que la fonction $F(t) = -\frac{p(t) - p_0}{p(t) - 2p_0}$ est proportionnelle à t.

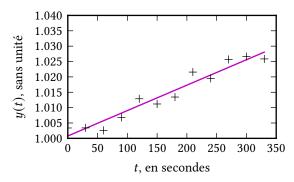
- 4 Montrer qu'une réaction d'ordre 2 est compatible avec ces résultats.
- 5 Calculer le temps de demi-réaction.

Exercice 5 : Cinétique de saponification

@ 2 | **%** 2

- Suivi conductimétrique;Cinétique d'ordre 2.

On étudie la cinétique de saponification du méthanoate d'éthyle par une solution aqueuse de soude,


$$HCOOC_2H_5 + HO^- \longrightarrow HCOO^- + C_2H_5OH$$

Juste après le mélange, les concentrations sont telles que $[HCOOC_2H_5]_0 = [HO^-]_0 = c_0 = 10 \,\text{mmol} \cdot L^{-1}$. La transformation est suivie par conductimétrie.

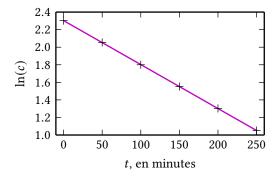
- 1 Rappeler la composition de la soude.
- **2** Exprimer l'avancement volumique x(t) en fonction de la conductivité $\sigma(t)$ de la solution.
- 3 On fait l'hypothèse que la réaction est d'ordre partiel 1 par rapport à chaque réactif. Montrer que dans ce cas

$$y(t) = \frac{c_0}{c_0 - x(t)} = 1 + c_0 kt.$$

- 4 On représente figure y en fonction de t. Conclure et déterminer la constante de vitesse.
- 5 Déterminer le temps de demi-réaction.

Figure 2 – Suivi cinétique de la saponification du méthanoate d'éthyle. La régression linéaire donne une droite d'équation y = At + B avec $A = 8.3 \cdot 10^{-5}$ et B = 1,001.

Exercice 6: Conservation du peroxodisulfate



- Suivi manométrique;
- ▶ Cinétique d'ordre 2;
- ▶ Loi d'Arrhénius.

Les ions peroxodisulfate $S_2O_8^{2-}$ sont instables en solution aqueuse car ils oxydent lentement l'eau en dioxygène en formant des ions sulfates SO_4^{2-} , ce qui a pour effet d'acidifier la solution. On cherche à savoir combien de temps une telle solution peut être conservée dans une pièce de stockage à 25 °C d'un laboratoire sans que sa concentration ne soit trop altérée.

Pour étudier la cinétique de la réaction, on suit l'évolution d'une solution de peroxydisulfate de sodium $\text{Na}_2\text{S}_2\text{O}_8$ de concentration initiale $C_0=10,0$ mmol \cdot L⁻¹. Ce suivi se fait en mesurant la pression dans un réacteur fermé de volume fixé. La figure ci-dessous donne la concentration c en ions $\text{S}_2\text{O}_8^{2-}$, calculée à partir des mesures de pression, pour une manipulation réalisée à 80 °C ainsi qu'une représentation graphique utile à l'exploitation. Des expériences complémentaires ont permis de déterminer que l'énergie d'activation de la réaction vaut $E_a=140\,\text{kJ}\cdot\text{mol}^{-1}$.

t (min)	0	50	100	150	200	250
$c \pmod{\cdot \mathrm{L}^{-1}}$	10,0	7,80	6,05	4,72	3,68	2,86

La droite de modélisation a pour équation $y = -5,00 \cdot 10^{-3}x + 2,30.$

Donnée : constante des gaz parfaits $R = 8,31 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

- **1** Écrire l'équation de réaction traduisant l'instabilité des ions peroxodisulfate. Pourquoi est-il judicieux de faire le suivi cinétique par mesure de pression?
- 2 Quel est l'intérêt de mener l'étude expérimentale à 80 °C alors que la pièce de stockage n'est qu'à 25 °C?
- **3 -** Montrer que les résultats obtenus par le suivi temporel sont compatibles avec une cinétique d'ordre 1 par rapport aux ions peroxodisulfate. Déterminer la constante de vitesse à cette température.
- **4** Pendant combien de temps peut-on conserver cette solution à température ambiante sans que sa concentration ne varie de plus de 1%?
- 5 Qu'en est-il si l'on souhaite maintenant conserver une solution dix fois plus concentrée?

Avec Python

Exercice 7 : Méthode différentielle

☐ 1 | ※ 2

- Méthode différentielle;
- ▶ Cinétique d'ordre 2;
- ▶ Écriture de code Python.

On s'intéresse à l'hydrolyse basique d'un ester E,

À l'instant initial, 1 mmol de E est introduite dans 100 mL d'une solution de soude de concentration 1,0 · 10⁻² mol · L⁻¹.

t (s)	0	10	20	30	40	50
[HO^{-}] ($10^{-3} \text{mol} \cdot L^{-1}$)	10	6,5	4,9	3,9	3,2	2,8

- 1 Montrer que l'expérience permet de déterminer l'ordre global de la réaction.
- **2** Écrire un code Python permettant d'estimer l'ordre par la méthode différentielle. Vous êtes chaudement encouragés à prendre un PC, Pyzo et à écrire le code pour de vrai!
- 3 Écrire un code Python permettant de confirmer cet ordre par la méthode intégrale.
- 4 Déterminer la constante de vitesse.

Exercice 8 : Hydrolyse du saccharose

- Cinétique d'ordre 1;
- > Traitement de données avec Python.

Cet exercice s'intéresse à la réaction dite d'inversion du saccharose dans une solution tampon à pH = 5,0 maintenu constant. La réaction d'inversion est décrite par l'équation

$$S_{(aq)} + H_3O_{(aq)}^+ \longleftrightarrow G_{(aq)} + F_{(aq)}$$

S étant le saccharose, G le glucose et F le fructose. On mesure par polarimétrie la concentration du saccharose au cours du temps. Les résultats sont représentés dans le tableau ci-dessous.

t (min)	0		-00		750	
$[S] \text{ (mol} \cdot L^{-1})$	0,402	0,344	0,279	0,198	0,138	0,099

- 1 Identifier la courbe à tracer à partir des données pour montrer que la réaction est d'ordre 1 par rapport à S.
- 2 Les données stockées dans deux tableaux numpy S et t. Écrire le code Python permettant de tracer la courbe voulue. Vous êtes encouragés à prendre un PC, Pyzo (ou Bashton) et à faire le tracé vous-même pour être sûr que votre code est fonctionnel!
- 3 Écrire le code Python permettant d'estimer la constante de vitesse apparente $k_{\rm app}$ et son incertitude-type $u(k_{\rm app})$ à partir des mesures. Même remarque sur le code : on trouve $k_{\rm app} = 1{,}39 \cdot 10^{-3}\,{\rm min}^{-1}$.

La même réaction est maintenant réalisée dans une autre solution tampon à pH = 3,8. Les résultats obtenus dans ces nouvelles conditions donnent une constante vitesse apparente $k'_{app} = 2,22 \cdot 10^{-2} \, \text{min}^{-1}$.

- ${f 4}$ En déduire l'ordre partiel de la réaction d'hydrolyse du saccharose par rapport aux ions oxonium ${f H_3O^+}$.
- 5 Déterminer enfin la valeur de la constante de vitesse k de cette réaction, sans oublier de préciser son unité.

D'autres méthodes de recherche d'une loi de vitesse

Exercice 9: Vitesses initiales

@ 2 | **%** 1

▶ Autre méthode de recherche d'une loi de vitesse.

On s'intéresse à la réaction entre le dioxyde d'azote et le monoxyde de carbone, qui a lieu par exemple dans les gaz d'échappements :

$$NO_2 + CO = NO + CO_2$$
.

Pour différentes concentrations, on mesure la vitesse initiale v_0 de la réaction. En déduire la loi de vitesse initiale.

$[NO_2]_i (mol \cdot L^{-1})$	$[CO]_i (mol \cdot L^{-1})$	$v_{\rm i}~({ m mol}\cdot{ m L}^{-1}\cdot{ m s}^{-1})$
0,1	0,1	$0.5\cdot10^{-2}$
0,1	0,4	$8,0 \cdot 10^{-2}$
0,2	0,1	$0.5\cdot10^{-2}$

Exercice 10 : Méthode des temps de demi-réaction

▶ Temps de demi-réaction.

On réalise à 298 K la réaction

$$2 \operatorname{Fe}^{3+} + \operatorname{Sn}^{2+} = 2 \operatorname{Fe}^{2+} + \operatorname{Sn}^{4+}$$
.

Le temps de demi-réaction est mesuré pour différentes concentrations initiales, voir tableau ci-dessous. Déterminer complètement la loi de vitesse.

$[\mathrm{Fe^{3+}}]_0 \; (\mathrm{mol} \cdot \mathrm{L}^{-1})$	1,0	1,0	1,0	0,60	0,40	0,20
$[\operatorname{Sn}^{2+}]_0 \ (\operatorname{mol} \cdot \operatorname{L}^{-1})$	0,010	0,020	0,50	0,30	0,20	0,10
$t_{1/2}$ (s)	4,1	4,0	5,9	9,8	14,7	29,4