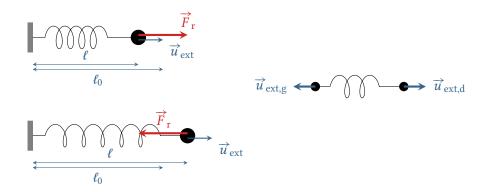
Régime libre des oscillateurs

I - Oscillateur harmonique

• Force de rappel d'un ressort : $\overrightarrow{F}_{r} = -k(\ell - \ell_{0})\overrightarrow{u}_{ext}$

k constante de raideur; ℓ_0 longueur à vide; $\Delta \ell = \ell - \ell_0$ allongement.



• Forme canonique :

pas de dérivée première
$$\begin{array}{c} \text{prefacteur 1} \\ \text{devant la dérivée} \\ \text{seconde} \end{array} \begin{array}{c} \text{pulsation propre } ([\omega_0] = \text{rad} \cdot \text{s}^{-1}) \\ \frac{\text{d}^2 s}{\text{d}t^2} + \omega_0^2 s = \text{des choses qui dépendent de } e \end{array}$$

oscillateur masse-ressort :
$$\omega_0 = \sqrt{\frac{k}{m}}$$
 oscillateur LC : $\omega_0 = \frac{1}{\sqrt{LC}}$

• Résolution :

Forme générale des solutions :

Utilisation de deux conditions initiales :

$$s(t=0^+) = S_0 = A\cos(0) + \underline{B}\sin(0) + s_P(0) \qquad \text{et} \qquad \frac{\mathrm{d}s}{\mathrm{d}t}(0^+) = \dot{S}_0 = -A\omega_0\sin(0) + \omega_0B\cos(0)$$

- Amplitude et phase : $s_{\rm H}(t) = S_{\rm m} \cos(\omega_0 t + \varphi) \sim \text{période des oscillations } T_0 = \frac{2\pi}{\omega_0}$.
- Bilan énergétique : OH = conservation de l'énergie totale et oscillation d'une forme à une autre.

II - Oscillateur amorti

• Forme canonique :

facteur de qualité
$$[Q] = 1$$
 devant la dérivée seconde
$$\frac{d^2s}{dt^2} + \frac{\omega_0}{Q}\frac{ds}{dt} + \omega_0^2s = \text{des choses qui dépendent de } e$$
 Circuit RLC : $\omega_0 = \frac{1}{\sqrt{LC}}$ et $Q = \frac{1}{R}\sqrt{\frac{L}{C}}$

• Polynôme caractéristique : $d^n s/dt^n \mapsto r^n$, pas de second membre.

$$\text{p.ex.} \qquad \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}u}{\mathrm{d}t} + {\omega_0}^2 u = {\omega_0}^2 E \qquad \mapsto \qquad r^2 + \frac{\omega_0}{Q} r + {\omega_0}^2 = 0$$

• Solutions homogènes :

	Régime apériodique	Régime pseudo-périodique	Régime critique
Aspect énergétique	forte dissipation	faible dissipation	cas limite
Facteur de qualité	Q < 1/2	Q > 1/2	Q = 1/2
Discriminant du polynôme carac.	$\Delta > 0$	$\Delta < 0$	$\Delta = 0$
Racines	$r_{\pm} \in \mathbb{R}$	$r_{\pm} = -\frac{1}{\tau} \pm \mathrm{i}\omega_{\mathrm{p}} \in \mathbb{C}$	$r = -\omega_0$
Solution homogène	$Ae^{r_+t} + Be^{rt}$	$\left(A\cos(\omega_{\rm p}t) + B\sin(\omega_{\rm p}t)\right) {\rm e}^{-t/\tau}$	$(At+B)e^{-\omega_0 t}$
Exemples d'allures possibles	$s_{H}(t)$ t	$s_{\mathrm{H}}(t)$	$s_{H}(t)$ t
Durée du transitoire	Augmente si Q diminue	Augmente si Q augmente	Minimale (pour un même ω_0)

• Régime pseudo-périodique :

- ▶ pseudo-pulsation $\omega_{\rm p} = \omega_0 \sqrt{1 \frac{1}{4Q^2}} \simeq \omega_0$ dès que $Q \gtrsim 2$.
- ▶ nombre d'oscillations pendant le transitoire $\simeq Q$.
- Limite de l'oscillateur harmonique : $Q \to \infty$