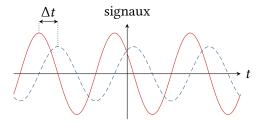
Résonance

I - Régime sinusoïdal forcé



- **Déphasage** d'un signal 2 par rapport à un signal $1 : \Delta \varphi = \varphi_2 \varphi_1$.
 - \triangleright en avance ($\Delta \varphi > 0$) ou en retard ($\Delta \varphi < 0$) de phase;
 - ▶ en phase ($\Delta \varphi = 0$), en opposition de phase ($\Delta \varphi = \pi$) ou en quadrature de phase ($\Delta \varphi = \pm \pi/2$);
 - ▶ le signal en avance atteint son maximum en premier;
 - ▶ décalage temporel : $|\Delta \varphi| = \omega \Delta t$.

• Représentation complexe :

$$u(t) = U_{\rm m} \cos(\omega t + \varphi) \longmapsto u(t) = U_{\rm m} e^{j(\omega t + \varphi)} = \underline{U} e^{j\omega t}$$

Retour à l'expression réelle :

$$u(t) = \operatorname{Re} \underline{u}(t) \iff \begin{cases} U_{\mathrm{m}} = |\underline{U}| \\ \varphi = \arg \underline{U} \end{cases}$$

• Dérivation et intégration :

$$\frac{\mathrm{d}u}{\mathrm{d}t} \longmapsto \mathrm{j}\omega \underline{U} \quad \text{et} \quad \int u(t) \, \mathrm{d}t \quad \longmapsto \quad \frac{\underline{U}}{\mathrm{j}\omega} \, .$$

Une équation différentielle est aussi vérifiée par les représentations complexes, et devient une équation algébrique.

II - Lois de l'électrocinétique en représentation complexe

• Impédances complexes : tout se passe comme si tous les dipôles étaient des résistances.

	Résistance	Condensateur	Bobine
Impédance complexe $\underline{U} = \underline{Z} \underline{I}$	$\underline{Z} = R$	$\underline{Z} = \frac{1}{jC\omega}$	$\underline{Z} = jL\omega$
Équivalent basse fréquence $\omega \rightarrow 0$	résistance	interrupteur ouvert	fil
Équivalent haute fréquence $\omega \to \infty$	résistance	fil	interrupteur ouvert

III - Étude d'un phénomène de résonance

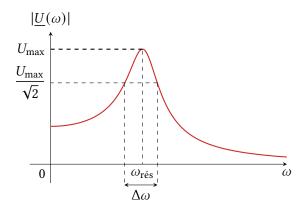
Peu (voire aucun) de résultats sont à connaître par cœur, tout sera toujours à retrouver dans un exercice.

- Étude asymptotique :
 - ightharpoonup distinguer limite haute ou basse fréquence par comparaison à la pulsation propre ω_0 ;
 - ▶ recherche d'un équivalent en ne gardant que les termes dominants du numérateur et du dénominateur puis en simplifiant le tout;
 - ▶ calcul du module et de l'argument de l'équivalent (et pas en toute généralité à ce stade!);
 - ▶ il peut être utile de multiplier (au moins dans sa tête) par la quantité conjugué pour identifier l'argument.

Fiche résumé E4+M5 : Résonance Lycée Corneille, MPSI 2

• Étude quantitative :

- ▶ exprimer le module en toute généralité et chercher son maximum ... en raisonnant sur le minimum du dénominateur;
- ▶ la condition de minimisation peut être évidente;
- \triangleright si elle ne l'est pas, l'écrire sous la forme $K/\sqrt{f(\omega/\omega_0)}$ et d'étudier la fonction f.
- Tracé des courbes de résonance : utiliser l'étude asymptotique + une valeur particulière en $\omega_{\text{rés}}$ ou ω_0 .



• Bande passante : intervalle de pulsations $\Delta \omega$ telles que

$$\left|\underline{U}(\omega)\right| \ge \frac{U_{\max}}{\sqrt{2}}$$

Délimitée par les pulsations de coupure.

• Acuité de la résonance :

- ▶ $\Delta\omega$ petit : résonance aigue ou étroite ;
- > $\Delta \omega$ grand : résonance large ou diffuse.
- Deux types de résonance : seules les trois premières lignes du tableau sont à connaître pour de vrai, les autres à savoir retrouver.

Exemple en électronique	Résonance en intensité i	Résonance en tension u_C	
Exemple en mécanique	Résonance en vitesse	Résonance en élongation	
Existence	Toujours	Uniquement si $Q > 1/\sqrt{2}$	
Pulsation de résonance	ω_0	$\omega_{\rm res} \lesssim \omega_0$	
Largeur de la résonance	$\Delta\omega = \frac{\omega_0}{Q}$	$\Delta\omega \simeq \frac{\omega_0}{Q} (Q \gg 1)$	
Aspects notables à $\omega = \omega_{\rm res}$	Maximum d'amplitude,	Maximum d'amplitude, Aucune relation de phase	
Aspects notables à $\omega = \omega_0$	Forçage et réponse en phase	Forçage et réponse en quadrature, Rapport des amplitudes égal à Q	
Courbe d'amplitude	$\begin{array}{c} 1.0 \\ \hline \\ \hline \\ \hline \\ \hline \\ 0.5 \\ \hline \\ 0.0 \\ \hline \\ 0 \\ \hline \\ 0 \\ \end{array}$	$\begin{array}{c} 5 \\ \hline Q \\ \hline \end{array}$	
Courbe de phase	$\pi/2$ 0 $Q = 0.2$ $-\pi/2$ 0 1 2 3 4 ω/ω_0	$Q = 5$ $Q = 0.2$ $-\pi$ 0 1 2 3 4 ω/ω_0	